Convex Kernel Underestimation of Functions with Multiple Local Minima
نویسندگان
چکیده
A function on R with multiple local minima is approximated from below, via linear programming, by a linear combination of convex kernel functions using sample points from the given function. The resulting convex kernel underestimator is then minimized, using either a linear equation solver for a linear-quadratic kernel or by a Newton method for a Gaussian kernel, to obtain an approximation to a global minimum of the original function. Successive shrinking of the original search region to which this procedure is applied leads to fairly accurate estimates, within 0.0001% for a Gaussian kernel function, relative to global minima of synthetic nonconvex piecewise-quadratic functions for which the global minima are known exactly. Gaussian kernel underestimation improves by a factor of ten the relative error obtained using a piecewise-linear underestimator [11], while cutting computational time by an average factor of over 28. keywords: multiple minima, underestimation, convex kernels, global minimization
منابع مشابه
Global Minimization via Piecewise-Linear Underestimation
Given a function on Rn with many multiple local minima we approximate it from below, via concave minimization, with a piecewise-linear convex function by using sample points from the given function. The piecewise-linear function is then minimized using a single linear program to obtain an approximation to the global minimum of the original function. Successive shrinking of the original search r...
متن کاملNonconvex Piecewise-Quadratic Underestimation for Global Minimization
Motivated by the fact that important real-life problems, such as the protein docking problem, can be accurately modeled by minimizing a nonconvex piecewise-quadratic function, a nonconvex underestimator is constructed as the minimum of a finite number of strictly convex quadratic functions. The nonconvex underestimator is generated by minimizing a linear function on a reverse convex region and ...
متن کاملMolecular structure determination by convex, global underestimation of local energy minima
The determination of a stable molecular structure can often be formulated in terms of calculating the global (or approximate global) minimum of a potential energy function. Computing the global minimum of this function is very difficult because it typically has a very large number of local minima which may grow exponentially with molecule size. The optimization method presented involves collect...
متن کاملAn Interior Point Algorithm for Solving Convex Quadratic Semidefinite Optimization Problems Using a New Kernel Function
In this paper, we consider convex quadratic semidefinite optimization problems and provide a primal-dual Interior Point Method (IPM) based on a new kernel function with a trigonometric barrier term. Iteration complexity of the algorithm is analyzed using some easy to check and mild conditions. Although our proposed kernel function is neither a Self-Regular (SR) fun...
متن کاملMODELING OF FLOW NUMBER OF ASPHALT MIXTURES USING A MULTI–KERNEL BASED SUPPORT VECTOR MACHINE APPROACH
Flow number of asphalt–aggregate mixtures as an explanatory factor has been proposed in order to assess the rutting potential of asphalt mixtures. This study proposes a multiple–kernel based support vector machine (MK–SVM) approach for modeling of flow number of asphalt mixtures. The MK–SVM approach consists of weighted least squares–support vector machine (WLS–SVM) integrating two kernel funct...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Comp. Opt. and Appl.
دوره 34 شماره
صفحات -
تاریخ انتشار 2006